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Abstract—Theoretical consideration is given to the temperature distributions and heat-transfer results
in laminar forced flow against a non-isothermal rotating disk. The surface temperature of the disk is
assumed to vary according to a power law with the radial distance. Numerical solutions of the
boundary-layer equations are presented to indicate the effects of the forced flow, of the non-uniform
surface temperature and of the Prandtl number, Asymptotic heat-transfer relations for large and small
Prandtl numbers are given.
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NOMENCLATURE
flow constant defined in (5), s71;
dimensionless parameter defined
in (12);
flow constant defined in (5), ft/s;

dimensionless parameter defined
in (12);

dimensionless parameter defined
in (14);

dimensionless functions defined in
(6);

local heat-transfer coefficient at r,
Btu/ft?s degF;

thermal conductivity of fluid, Btu/ft
s degF;

dimensionless constant defined in
(5);

constant defined in (5), degF/ftm;
local Nusselt number at r;

Prandtl number of fluid;

radial co-ordinate, ft;

temperature, °F;

wall temperature, °F;

free-stream temperature, °F;
velocity component in r-direction,
ft/s;

velocity component in ¢-direction,
ft/s;

velocity component in z-direction,

ft/s:
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z, co-ordinate normal to disk surface,

ft.
Greek symbols

a, thermal diffusivity of fluid, ft?/s;

3, dimensionless thermal boundary-
layer thickness;

L, dimensionless distance, 7/3;

7, dimensionless distance defined in
(7;

8, dimensionless temperature defined
in (6);

A, dimensionless parameter defined in
(N;

v, kinematic viscosity of fluid, ft¥/s;

¢, azimuthal co-ordinate, rad;

w, angular velocity in ¢-direction,
rad/s.

INTRODUCTION

THE flow and heat transfer about a rotating disk
has long been a subject of investigations. The
laminar flow and heat transfer about a rotating
disk situated in a large body of quiescent fluid
were first analysed by von Karman [1] and by
Millsaps and Pohlhausen [2], respectively. In
recent years, considerable attention has been
given to the extensions of this problem such as
the effects of compressibility [3], of Prandtl
number [4], and of non-uniform surface tempera-
ture [5, 6]. The more general problem of a forced
flow against a rotating disk, however, has
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received relatively little attention. The general
nature of this problem can be fully understood
by realizing its two limiting cases, the flow
induced by a rotating disk (i.e. without forced
flow), and the axisymmetrical stagnation flow
(i.e. without rotation of the disk).

The exact solution for the laminar forced
flow against a rotating disk was first given by
Hannah [7]. Independently, the exact solution
was rediscovered by Tifford and Chu [8], and
an approximate solution obtained from the
integral method was given by Schlichting and
Truckenbrodt [9]. More recently, Yamaga [10]
extended the integral analysis [9] to the heat-
transfer problem. But his results are quite limited
and their accuracy is unknown.

In the present paper, consideration is given to
the extension of the exact analysis for the laminar
forced flow against a rotating disk to the heat-
transfer problem in such a flow. The analysis is
based on a power-law wall-temperature distribu-
tion, with uniform wall temperature as a special
case. Numerical results obtained are presented
to indicate the effects of the forced flow, of the
non-uniform  wall temperature and of the
Prandtl number. Asymptotic heat-transfer rela-
tions for large and small Prandtl numbers are
also given.

ANALYSIS

The physical system under consideration is a
steady, incompressible, laminar flow over an
infinitely extended disk rotating at a constant
angular speed about its symmetrical axis. There
cxists no external force field in the system. The
fluid is assumed to have constant physical
properties. The co-ordinate system is shown in
Fig. 1. The governing equations for such a
system, under boundary-layer approximations
and negligible viscous dissipation, are given as:

Z

F1G. 1. The co-ordinate system.
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continuity:
momentum:
u Cru + w il—l — If =v ?zq (u ail) (2)
cr dz  r oz2 orl, .«
s
energy':
ui?%— w 2?2 a%izg. (4)
The boundary conditions are:
u(r,0) =0 ur, ) =ar }
v(r, 0) == wr v(r, w) =0 |
w(r,0) = w(r, o) = —2az — b !} ©)
T(r, 0) = T + nrm T(r, %) = Ts. J

The surface temperature of the disk is assumed
to follow a power-law distribution due to similar-
ity consideration. When m — 0. the surface
temperature is uniform. The free-stream velocity
boundary conditions are obtained from the
potential-flow solution [11].

The partial differential system can be reduced
to an ordinary one if the following transforma-
tions are introduced:

\

u-= M F(n), v--orGy), w2 H() L

6
71 b qu == (T}/v N TOQ) 0(7” ’! ( )

where

0= (A2 (T)

The governing equations after the above trans-
formation become

A= (@@ + W)l

H +2F =0 (8)
F' o HF — F* A2G® — B* {9
G7 - HG - 206G =0 vio)
0 - (POHY — (n Pr)Fo=-0 (1D
where
A=w/), B=adalA (12)
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The boundary conditions are given as

F0)=0 F(wo)=B
G0)=1 G(o0) =0 a3)
HO)=0 H(0)= —2Byp—C
6(0)=1 6(c0) =0
where
C = b(vA)~1/2, (14

The first three equations, (8), (9) and (10)
with their corresponding boundary conditions
were integrated numerically by Hannah [7] for
cases with {4/B) =0, {, 1, 2 and oo. The case
with (4/B) = 0 represents the axisymmetrical
stagnation flow, which has been studied by
Homann [11]. The other limiting case with
(A/B) = oo is the induced flow due to a rotating
disk, and this was first integrated numerically
by Cochran [12}. For the heat-transfer part, (11)
with its boundary conditions has been studied
extensively for the case with (4/B) = oo [2-6].
The heat-transfer results for (4/B)=0 and
m = 0 were given by Sibulkin [13]. For values
of (A/B) other than the above two limits,
Yamaga [10] obtained the heat-transfer results
for m = 0 (isothermal disk) and Pr = 0-72 and
1-0 by use of integral analysis.
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Fic. 2. Distributions of dimensionless temperature
(m =0, Pr = 10).
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In the present analysis, the velocity functions
H and F reported by Hannah [7] were used to
obtain the temperature function 8 in (11) by use
of IBM 7090 electronic computer. The resulting
dimensionless profiles are shown in Figs. 2-5
form = 0, Pr = 10, 1-0 and 0-1, and for m = 2,
and Pr == 1-0.
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Fic. 5. Distributions of dimensionless temperature
(m = 2, Pr == 1).

HEAT-TRANSFER RESULTS

From the definition of local heat-transfer
coefficient, /,:

K5 =mr
- (a): b (T -

there follows

Tw) (15

A‘ 1/2
By —k (‘) 0(0).

v

(16)

Therefore, a local Nusselt number may be
conveniently defined as

Nuy = hf (1;), z

Ab (7

- 010).

The local Nusselt numbers for different cascs
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are tabulated in Table 1. In the special case of
an isothermal disk (m = 0), the local Nusselt
numbers from exact analysis are compared with

integral analysis [10]. It is shown that the
integral analysis by Yamaga gives the heat-
transfer results with an error less than 10 per
cent from the exact results of boundary-layer
equations.

ASYMPTOTIC HEAT-TRANSFER RELATIONS

First, as the Prandtl number becomes very
small, the velocity boundary layer is very thin
as compared with the thermal boundary layer.
Therefore, in solving the energy equation (1),
the following approximation can be made:

H(n) ~ H(0) = — 2By — C  (18)

and

F(z) ~ F(o0) = B (19)

where values of B and C depend upon the ratio
of (4/B) as tabulated in Table 2. The energy
equation thus becomes

0 - (Pr)2By + CO)8 — (m BPr)§ =0 (20)

with the boundary conditions prescribed in (13).
No general solution of closed form is available.

The special case of an isothermal disk (m - 0),
however, does possess a solution. It can be
casily shown that for B -~ (0 the local Nusselt

number s
Nty P By exp (- PrCEA4AB)
i erf {(BPAYEC2B] L (21)

For 8 = 0, i.e. the induced flow due to a rotating
disk, the solution has been given in [4].

Tuble V. Values of the local Nusselt munber

A Nuy Nuy Nitr Nty
B (m = 0, Pr-=10) (m -0, Pr— 10) G 0, P 0y (2, Pr- 1:0)
0 {-752 (1-800)* 0-762 (0-780) 03014 1075
1 1-535 (1-562) 0658 (0-677) 0-257 0-934
2 1340 (1-361) 0-557 (0-364) G210 0-800
oz 1-134 (1-170) 0396 (0-364) 077 0-616

* Values in parentheses are from integral analysis [10].
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Table 2. Flow constants for forced flow against a rotating disk from [7]

A ’?

B B C H"(0)
0 1-000 —0-569 —2:624
1 0-707 —0-440 —1-872
2 0-447 —0-275 —1:372
o 0-000 0-886 —1020

An approximate solution to (20) can be
obtained by applying the integral concept only
to the thermal boundary layer. This integral
analysis for asymptotic heat-transfer results is
slightly different from that of Yamaga, in which
both the velocity and thermal boundary layers
are subject to general integral consideration.
Consider a fourth-order polynomial profile,

b=1-204+20 -0 - (22

where { = /8, and 8 is the thermal boundary-
layer thickness. This temperature profile satisfies
the appropriate boundary conditions. Substitut-
ing (22) into (20) and integrating (20) across the
thermal boundary layer, there follows for
B=0:

Nu, = C Pr (23)
and for B # 0:
_ 1'22BPr(m-+2)
Nur = [(—Pr Cy+2:4BPr(im+2)]V2—CPr’ (24)

It is interesting to note that the dependence of
m is missing in (23). This indicates that for the
induced flow due to a rotating disk, the local
Nusselt number at very low Prandtl numbers is
independent of any specific power-law wall-
temperature distribution. This is also a direct

consequence of (20) as the effect of m disappears
at B = 0.

When the Prandtl number is large, the thermal
boundary layer is affected only by a very thin
region of the velocity boundary layer near the
wall. Thus the velocity field in the thermal
boundary layer is given by

H(n) = H"(0) n*/2
and from (8),
F(n) = —H"(0)n/2 (26)

where the value of H’(0) is a function of (4/B)
as given in Table 2. Consequently, the energy
equation becomes

6 — § Pr H"(0) %0
+imPrH" Q)70 =0 (27)
with the temperature boundary conditions in
(13).
The solution to (27) for an isothermal disk
(m = 0) gives

Nu, = [—Pr H'(0)/6]1*/3/T'(4/3) (28)

which is of the same form as given in [4] for the
induced flow due to a rotating disk (4/B = ).
For a non-isothermal disk of power-law wall-
temperature distribution, the integral analysis

(25)

Table 3. Asymptotic heat-transfer results from (23), (24) and (29)

A Nu, Nuy Nuy Nuy

B (m =0, Pr = 100) (m= 0, Pr=001) (m =2, Pr=100) (m =2, Pr=001)
0 4-12 (3-94)* 0-109 (0-097) 519 0156

1 3-68 (3-52) 0-0904 (0-0810) 4-64 0-128

2 3-32 (3-18) 0-0718 (0:0654) 418 0-103

© 3-01 [2-69]} 0-00886 [0-00871] 0-00886

3-79 [3-71]

* Values in parentheses are from solutions given in (21) and (28).
T Values in brackets are from the numerical solution in {4, 6].

HM 7 1
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based on the temperature profile in (22) gives

+2) Pr H"(0)]*"
N =2 [ CEDEH O

The approximate asymptotic heat-transfer results
based on (23), (24) and (29) are tabulated in
Table 3 along with the results given by (21) and
(28), and the numerical results computed in [4]
and [6].

(29)
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Résumé—On étudie théoriquement les distributions de températures et la transmission de chaleur
dans I'écoulement laminaire au-dessus d’un disque non isotherme en rotation. On suppose que la
température de surface du disque varie suivant une loi de puissance en fonction de la distance radiale.
On présente des solutions numériques des équations de la couche limite qui traduisent les effets de
I’écoulement forcé, de la température de surface non-uniforme et du nombre de Prandtl. Les relations
asymptotiques de transmission de chaleur sont données pour de grands et petits nombres de Prandtl.

Zusammenfassung—Die Temperaturverteilungen und der Wiarmeiibergang fiir Zwangskonvektions-

stromung gegen eine nichtisotherme, rotierende Scheibe wird einer theoretischen Betrachtung

unterzogen. Die Oberflichentemperatur der Scheibe soll sich dabei nach einem Potenzgesetz mit

dem Radialabstand dndern. Numerische Ldsungen der Grenzschichtgleichungen werden angegeben,

um den Einfluss der Zwangsstromung auf die nicht einheitliche Oberflichentemperatur und die

Prandti-Zahl anzugeben. Asymptotische Wirmeiibergangsbeziehungen fiir grosse und kleine Prandtl-
Zahlen werden mitgeteilt.

Ansoranus—IIpuBOINTCA TeopeTHUECKOE DpelIeHie PACIpeNeseHnsl TEMIIEPATYD U Pe3yilb-

TATH N0 TEINICOGMEHY HEeH30TePMIYeCKOTO BPalaiolIeroCH AICKA B BHIHYMHAESHHOM JIAMUHA-

puom noroke. IIpexnonaraioT, YTo TeMIIepaTypa MOBEPXHOCTH JHMCKA MIMEHAETCA IO CTeleH-

HOMY 8aKOILLYy BROIL paguyca. IIpeicranieHnble yucAeHHEE PelfeHnsA yPABHEHHI [IoTpatny-

HOTO CIIOf1 YKA3HIBAOT 1A BISAHIEC BBIIYHGICHUOTO IIOTOKA, HEOXUOPORHON TeMIepaTyphl

nosepxuocty u uncia Ipanjras. IpaBogATes acHMATOTHNECKIIE OTHOUIENHA TEINIO00MEHA A
GoablMX M MaXLIX uncen Hpaupraa.



