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Abstract-Theoretical consideration is given to the temperature distributions and heat-transfer results 
in laminar forced flow against a non-isothermal rotating disk. The surface temperature of the disk is 
assumed to vary according to a power law with the radial distance. Numerical solutions of the 
boundary-layer equations are presented to indicate the effects of the forced flow, of the non-uniform 
surface temperature and of the Prandtl number. Asymptotic heat-transfer relations for large and small 

Prandtl numbers are given. 
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NOMENCLATURE 

flow constant defined in (5), s-l; 
dimensionless parameter defined 
in (12); 
flow constant defined in (5), ft/s; 
dimensionless parameter defined 
in (12); 
dimensionless parameter defined 
in (14); 
dimensionless functions defined in 

(6); 
local heat-transfer coefficient at r, 
Btu/ft% degF; 
thermal conductivity of fluid, Btu/ft 
s degF; 
dimensionless constant defined in 

(5); 
constant defined in (5), degF/ft”‘; 
local Nusselt number at r; 
Prandtl number of fluid ; 
radial co-ordinate, ft ; 
temperature, OF; 
wall temperature, OF; 
free-stream temperature, “F: 
velocity component in r-direction, 
ftt/s ; 
velocity component in +-direction, 
ftjs ; 
velocity component in z-direction, 
ft/s: 
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co-ordinate normal to disk surface, 
ft. 

Greek symbols 

Q, thermal diffusivity of fluid, ft”/s; 

6, dimensionless thermal boundary- 
layer thickness; 

5, dimensionless distance, q/6; 

% dimensionless distance defined in 

(7); 
0, dimensionless temperature defined 

in (6); 
A dimensionless parameter defined in 

(7); 
v, kinematic viscosity of fluid, ft2/s; 

A azimuthal co-ordinate, rad; 

w, angular velocity in &direction, 
rad/s. 

INTRODUCTION 

THE flow and heat transfer about a rotating disk 
has long been a subject of investigations. The 
laminar flow and heat transfer about a rotating 
disk situated in a large body of quiescent fluid 
were first analysed by von Karman [I] and by 
Millsaps and Pohlhausen [2], respectively. Tn 
recent years, considerable attention has been 
given to the extensions of this problem such as 
the effects of compressibility [3], of Prandtl 
number [4], and of non-uniform surface tempera- 
ture [5, 61. The more general problem of a forced 
flow against a rotating disk, however, has 
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received relatively little attention. The general 
nature of this problem can be fully understood 
by realizing its two limiting cases, the flow 
induced by a rotating disk (i.e. without forced 
flow), and the axisymmetrical stagnation flow 
(i.e. without rotation of the disk). 

The exact solution for the laminar forced 
flow against a rotating disk was first given by 
Hannah 171. Independently, the exact solution 
was rediscovered by Tifford and Chu [8], and 
an approximate solution obtained from the 
integral method was given by Schlichting and 
Truckenbrodt [9]. More recently. Yamaga [lo] 
extended the integral analysis [9] to the heat- 
transfer problem. But his results are quite limited 
and their accuracy is unknown. 

In the present paper, consideration is given to 
the extension of the exact analysis for the laminar 
forced flow against a rotating disk to the heat- 
transfer problem in such a flow. The analysis is 
based on a poiver-law wall-temperature distribu- 
tion, with uniform wall temperature as a special 
case. Numerical results obtained arc presented 
to indicate the effects of the forced flow, of the 
non-uniform w,all temperature and of the 
Prandtl number. Asymptotic heat-transfer rela- 
tions for large and small Prandtl numbers arc 
also given. 

ANALYSIS 

The physical system under consideration is a 
steady, incompressible. laminar flow over an 
infinitely extended disk rotating at a constant 
angular speed about its symmetrical axis. There 
exists no external force field in the system. The 
fluid is assumed to have constant physical 
properties. The co-ordinate system is shown in 
Pig. 1. The governing equations for such a 
system, under boundary-layer approximations 
and negligible viscous dissipation, are given as: 

Z 

da (P TW 
I 

0 

FIG. 1. The co-ordinate system. 

continuity : 

momentum : 

energy : 

The boundary conditions are: 

u(r, 0) -7 0 u(r, -x) = ar 

v(r, 0) := wr zfr. co) -7 0 

n(r, 0) -:= 0 itfr, tx) == --2aZ 

T(r, 0) == TX1 i- nr” T(r. ~8) I= TX>. 

_ 

The surface temperature of the disk is assumed 
to follow a power-law distribution due to similar- 
ity consideration. When UI m:m 0. the surface 
temperature is uniform. The free-stream velocity 
boundary conditions are obtained from &he 
potential-flow solution [l I]. 

The partial diflerential system can be reduced 
to an ordinary one if the following transforma- 
tions are introduced: 

u -= ,\r F(rl). 1’ c0r G(y). 11‘ -~ (V/i)‘.‘2 H(f) -1 

7’ -- Tm r (Tv Tm) U(~J ! 

(6) 

where 

,I _ ((12 + &)I,2 , ‘! -= (A/v)““z. (7) 

The governing equations after the above trans- 
formation become 

H’-+ 2F 7: 0 (8) 
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The boundary conditions are given as 

F(0) = 0 F(c0) = B 
1 

G(0) = 1 G(co)=O 

H(0) = 0 H(co)= -2Bq-C 
(13) 

e(0) = 1 0(co) = 0 J 

where 

c = b(vh)-1’2. (14) 

The first three equations, (S), (9) and (10) 
with their corresponding boundary conditions 
were integrated numerically by Hannah [7] for 
cases with IA/B) = 0, *, 1,2 and co. The case 
with (A/B) = 0 represents the axisymmetrical 
stagnation flow, which has been studied by 
Homann [ll]. The other limiting case with 
(A/B) = co is the induced flow due to a rotating 
disk, and this was first integrated numerically 
by Cochran [12]. For the heat-transfer part, (11) 
with its boundary conditions has been studied 
extensively for the case with (A/B) = co [2-61. 
The heat-transfer results for (A/B) = 0 and 
m = 0 were given by Sibulkin [13]. For values 
of (A/B) other than the above two limits, 
Yamaga [lo] obtained the heat-transfer results 
for m = 0 (isothermal disk) and Pr = 0.72 and 
1.0 by use of integral analysis. 

m-0 

Pr= 10 

FIG. 2. Distributions of dimensionless temperature 
(m = 0, Pr = 10). 

In the present analysis, the velocity functions 
H and F reported by Hannah [7] were used to 
obtain the temperature function 0 in (11) by use 
of IBM 7090 electronic computer. The resulting 
dimensionless profiles are shown in Figs. 2-5 
form=O,Pr== 10,1~0and0~1,andform=2, 
and Pr = 1.0. 

FIG. 3. Distributions of dimensionless temperature 
(m = 0, Pr = 1). 

0 3 6 779 12 I 

FtG. 4. Distributions of dimensionless temperature 
(?n = 0, Pr = O-1). 
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are tabulated in Table 1. In the special case of 
an isothermal disk (m = 0), the local Nusselt 
numbers from exact analysis are compared with 
those available for Pr -y= I.0 and Pr -1: IO from 
integral analysis [IO]. It is shown that the 
integral analysis by Yamaga gives the heat- 
transfer results with an error less than 10 per 
cent from the exact results of boundary-layer 
equations. 

ASYMPTOTIC HEAT-TRANSFER RELATIONS 

First, as the Prandtl number becomes very 
small, the velocity boundary layer is very thin 
as compared with the thermal boundary layer. 
Therefore, in solving the energy equation (1 I), 
the following approximation can be made: 

FIG. 5. Distributions of dimensionless temperature and 

(19) 

HEAT-TRANSFER RESULTS where values of B and C depend upon the ratio 

From the definition of local heat-transfer of (A/B) as tabulated in Table 2. The energy 

coefficient, 17,: equation thus becomes 

zz h, ( T,,, 7,,) ( I 3 
0” ~;m (P/.)(2&j I- C) 0’ -~- (I?? B Pr) l4 --z 0 (20) 

z-0 \\ith the boundarv conditions prescribed in (13). 

there follows No general solutibn of closed-form is available. 

‘A’ 1 2 

0 

The special case of an isothermal disk (nz : 0). 
I,, ~- ~. k _ t?‘(O). (16) ho\vcver. dots possess a solution. It can bc 

1’ 
easily shown what for H _j 0 the local Nusselt 

Therefore, a local Nusselt number may be nilmbcr i\ 
conveniently defined as ,,\‘!,, , i’r 13)’ ” cxp ( I’? C“j4H) 

I 2 
,W& =; ; : 

( 1 
n’(o). (17) i1 crt’[(1~/~r)“zC’/2B]j I, (21) 

i’? i or fj 0. ix. t!x induced Aow due to a rotating 
The local Nusselt numbers for different casts disk. tile solution has been given in [4]. 

4 Nllr .Vilr 
I1 (I?1 0, Pr 2 10) (tt1 0, Pr I ,O) 

..__~.~._~ ~~ ~. __-._- -.-.. .-~~ .~. 
0 I .752 (I wO)* 0.762 (0.780) 
I 1.535 (1.562) 0,658 (0,677) 
2 I.340 (1.361) (I.557 (0.564) 

I’ 1.134 (1.170) 0 1’96 (0.3hi) 

* Values in p,~rentheses are from integral analqsls [IO]. 
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Table 2. Flow constants for forcedflow against a rotating disk from [7] 
- 

A 
B 

B c W(O) 

251 

0 1GOO - 0.569 - 2.624 
1 0.707 - 0440 -1.872 
2 0.447 -0.275 - 1.372 
03 OGOO 0.886 - 1.020 

__ -- 

An approximate solution to (20) can be 
obtained by applying the integral concept only 
to the thermal boundary layer. This integral 
analysis for asymptotic heat-transfer results is 
slightly different from that of Yamaga, in which 
both the velocity and thermal boundary layers 
are subject to general integral consideration. 
Consider a fourth-order polynomial profile, 

0 = 1 - 25 -+ 2p - p . (22) 

where 5 E v/S, and 6 is the thermal boundary- 
layer thickness. This temperature profile satisfies 
the appropriate boundary conditions. Substitut- 
ing (22) into (20) and integrating (20) across the 
thermal boundary layer, there follows for 
B = 0: 

Nt+=CPr (23) 

and for B # 0: 

1.2 BPr (m + 2) 
,‘Q _ ___.___ ._____~ ___ 

[(Pr C)z + 2.4 B Pr (m + 2)]112 - C Pr * (24) 

It is interesting to note that the dependence of 
m is missing in (23). This indicates that for the 
induced flow due to a rotating disk, the local 
Nusselt number at very low Prandtl numbers is 
independent of any specific power-law wall- 
temperature distribution. This is also a direct 

consequence of (20) as the effect of m disappears 
at B = 0. 

When the Prandtl number is large, the thermal 
boundary layer is affected only by a very thin 
region of the velocity boundary layer near the 
wall. Thus the velocity field in the thermal 
boundary layer is given by 

H(T) = H”(0) 172/2 (25) 

and from (8), 

F(T) = --H”(O) T/2 (26) 

where the value of H”(0) is a function of (A/B) 
as given in Table 2. Consequently, the energy 
equation becomes 

8” - 3 Pr H”(0) 7fW 

+ $ m Pr H”(O) 770 = 0 (27) 

with the temperature boundary conditions in 
(13). 

The solution to (27) for an isothermal disk 
(m = 0) gives 

Nu, = [ -Pr IIZ”(O)/~]~/~/I’(~/~) (28) 

which is of the same form as given in [4] for the 
induced flow due to a rotating disk (A/B = co). 
For a non-isothermal disk of power-law wall- 
temperature distribution, the integral analysis 

Table 3. Asymptotic heat-transfer results from (23), (24) and (29) 
___ 

A 
7i (WI = TPr = 100) (m = O,Y?= 0.01) (m = 2,%= 100) (m = 2,z 0.01) 

0 4.12 (3.94)* 0.109 (0.097) 5.19 0.156 
I 3.68 (3.52) 0.0904 (0.0810) 464 0.128 
2 3,32 (3.18) 0.0718 (0.0654) 4.18 0.103 
03 3.01 [2.69]t 0.00886 [OGO871] 3.79 [3.71] OxKI886 

-.___-______ ___ _____~___ PZ__Y ~ _____ --____ 
* Values in parentheses are from solutions given in (21) and (28). 
t Values in brackets are from the numerical solution in [4, 61. 
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based on the temperature profile in (22) gives disk rotating in still air, Trans. ASMEJ. Appl. Mech. 
E 81.672-673 (1959). 

(WI + 2) Pr H”(0) l’s 6. J. P.‘HARTN& and E. C. DELAND, The influence of 
jQ,, = 2 _ -~60-~~-~ 

[ 1 . (29) Prandtl number on the heat transfer from rotating 
nonisothermal disks and cones, Trans. ASME J. 

The approximate asymptotic heat-transfer results Heat Transfer C 83,95-96 (1961). 

based on (23), (24) and (29) are tabulated in 
7. D. M. HANNAH, Forced flow against a rotating disc. 

Table 3 along with the results given by (21) and 
British Aero. Res. Comm. Rep. and Memo. No. 
2772 (1947). 

(28), and the numerical results computed in [4] 8. A. N. TIFFORD and S. T. CHU, On the flow around a 

and [6]. rotating disc in a uniform stream, J. Aero. Sci. 19, 
284-285 (1952). 

1. 

2. 

3. 

4. 

5. 
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R&urn&On Btudie thkoriquement les distributions de temperatures et la transmission de chaleur 
dans l’t+coulement laminaire au-dessus d’un disque non isotherme en rotation. On suppose que la 
temptrature de surface du disque varie suivant une loi de puissance en fonction de la distance radiale. 
On pr&ente des solutions numCriques des equations de la couche limite qui traduisent les effets de 
l’&zoulement for&, de la tempkrature de surface non-uniforme et du nombre de Prandtl. Les relations 
asymptotiques de transmission de chaleur sont don&es pour de grands et petits nombres de Prandtl. 

Zusammenfassung-Die Temperaturverteilungen und der Wtirmeiibergang fir Zwangskonvektions- 
striimung gegen eine nichtisotherme, rotierende Scheibe wird einer theoretischen Betrachtung 
unterzogen. Die OberflBchentemperatur der Scheibe sol1 sich dabei nach einem Potenzgesetz mit 
dem Radialabstand Indern. Numerische Liisungen der Grenzschichtgleichungen werden angegeben, 
urn den Einfluss der ZwangsstrGmung auf die nicht einheitliche Oberflkhentemperatur und die 
Prandtl-Zahl anzugeben. Asymptotische WLrmeiibergangsbeziehungen fiir grosse und kleine Prandtl- 

Zahlen werden mitgeteilt. 

AEHOT~QHSI-IIPHBO~MTCH TeopeTHsecKoe perrIerIIIe pacnpeAeneHmI TehIrnepaTyp w peaynb- 
TaTbI II0 TenJIOO6MeHy HeIl~OTepMIlYeCKOrO BpaLIWOIIW’OCH SnCHa B BbIHyW~eHHOM JIaMIIHa- 
pHOM noToHe. IIpefinonaraWr, ‘ITO TeMnepaTypa HonepxaocTA ErIcrta Ii:IMeIIneTcfI no cTeneI$- 
HOMy 33IiOIIy BAO~L paaL1yc.a. 1Ipe;rcTaBneIIIILIe yIrcneHHne peureII>In ypaBHeIIIIit IrorpaHIIlI- 
110r0 CJIOfI yItanbIBaIOT IIH BJIIIRIIIIC BbIIIylK~CHHOrO IIOTOKa, ~~eo~~Iopo~~olt TemnepaTypbI 
IIoBepXHOCTIi H ‘ICICJIa IlpaHnTJIR. IIpHBOWTCfI 3CIIMIITOTlI~ieCKII~ OTIIOIII~lIIlR TeIIJIOO6MeH3~JIR 

6on~mrrx II MamLIx YMcen IIparInTna. 


